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We investigated the gene coexpression network in Saccharo-
myces cerevisiae, in which genes are linked when they are
coregulated. This network is shown to have a scale-free, small-
world architecture. Such architecture is typical of biological
networks in which the nodes are connected when they are
involved in the same biological process. Current models for the
evolution of intracellular networks do not adequately reproduce
the features that we observe in the network. We therefore derive
a new model for its evolution based on the observation that there
is a positive correlation between the sequence similarity of
paralogues and their probability of coexpression or sharing of
transcription factor binding sites (TFBSs). The simple, neutralist’s
model consists of (1) coduplication of genes with their TFBSs,
(2) deletion and duplication of individual TFBSs and (3) gene loss.
A network is constructed by connecting genes that share multiple
TFBSs. Our model reproduces the scale-free, small-world
architecture of the coregulation network and the homology
relations between coregulated genes without the need for
selection either at the level of the network structure or at the
level of gene regulation.
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INTRODUCTION
Unravelling the interactions between the elements of a cell
constitutes a major goal of the genome era. The structure of the
resulting interaction networks is relevant to the functioning of the
cell, for example, in development (Davidson et al, 2003), and for
the interpretation of experimental results. Network analyses have
shown a correlation between, on the one hand, the essentiality of
a gene and, on the other hand, either the number of connections
that the gene has (Jeong et al, 2001) or the topology of the

metabolic network (Stelling et al, 2002; Forster et al, 2003).
Furthermore, networks provide, for example, a framework for the
interpretation of synthetic lethal knockouts (Brummelkamp &
Bernards, 2003; Sonoda et al, 2003). The analysis of intracellular
network topology also provides an objective, genome-wide base
for the classic idea that a cell can be divided into functional
modules (Snel et al, 2002; Yanai & DeLisi, 2002; Davidson et al,
2003), and network topology correlates with sequence variation:
sequences evolve slowly when they have many connections in the
network (Fraser et al, 2002) or when they are part of relatively
densely connected motifs (Wuchty et al, 2003). Finally, network
approaches are used to integrate various types of genomics data to
increase the reliability of predicted interactions (Jansen et al,
2003), and one can envision that the topology of intracellular
networks provides constraints for the manipulation and design of
cells.

The main source of data for the reconstruction of intracellular
networks is genomics. Facets of the cellular network that have
been studied include protein interaction networks in which the
nodes (proteins) are connected when they physically interact
(Uetz et al, 2000; Ito et al, 2001; Jeong et al, 2001; Wagner,
2001), metabolic networks in which the nodes (metabolites) are
connected when they are substrates or products in the same
biochemical reaction (Fell & Wagner, 2000; Jeong et al, 2000; Ma
& Zeng, 2003), genomic association networks in which the nodes
(genes) are connected when they occur repeatedly together in
operons (Snel et al, 2002), and evolutionarily conserved coex-
pression networks (Stuart et al, 2003). The study of these networks
has revealed that they all have a similar, nontrivial architecture.
First, they are so-called scale-free networks. This means that there
is no typical number of connections per node; rather the
distribution of the number of connections (k) per node (N) follows
a power law (N(k)Bk�g). In other words, there are many nodes
with few connections and a small but still significant number of
nodes with many interactions. Second, these networks have a
small-world architecture. This implies that, on the one hand, they
are highly clustered: when a node is connected to two other
nodes, the latter two also tend to have a direct connection to each
other. On the other hand, the average shortest path length in the
network (L, the minimum number of connections that one needs
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to get from one node to any other node) is almost as low as that for
random networks (Watts & Strogatz, 1998). The scale-free, small-
world architecture appears typical for intracellular networks in
which the nodes are connected when they are involved in the
same biological process. In contrast, another type of network, the
gene regulatory network of Saccharomyces cerevisiae, in which
the connections are between transcription factors and the genes
they regulate, does not have a scale-free but rather an exponential
distribution of the number of connections per node (Guelzim et al,
2002; Lee et al, 2002).

Because of the importance of molecular networks for the
functioning of the cell, there is a great deal of interest in the
evolution and origin of these networks. Yet it remains an open
question whether the scale-free, small-world architecture is a
direct product of selection and thus functionally meaningful,
merely a by-product of the requirements of function and of
selection at other levels, or even a natural consequence of
mechanisms such as gene duplication. The evolution of scale-free
networks has been explained in terms of selection on global
properties such as robustness (Jeong et al, 2000; Guelzim et al,
2002) and the fast spread of perturbations (Fell & Wagner, 2000).
It has also been addressed in phenomenological models (Bhan
et al, 2002; Ravasz et al, 2002) that do not require selection but
that are not supported by independent data. Here we analyse the
network architecture of a general indicator of protein involvement
in the same biological process: gene coexpression in S. cerevisiae
(Hughes et al, 2000). We show that the gene coexpression
network in S. cerevisiae is a scale-free, small-world network. By
exploiting homology relations between the genes in the coex-
pression network, we formulate a neutralist model in which the
scale-free, small-world architecture is a natural consequence of
the mechanisms behind gene regulation evolution. This calls into
question global selection mechanisms for the architecture of
intracellular networks.

RESULTS
Although gene coexpression is a continuous observable, the
underlying principle is discrete: the sharing of regulatory
elements. We therefore translate gene coexpression into a discrete
network. In the network, the genes are the nodes, which are
connected to each other when coexpressed. Such a network
representation allows a comparison of the global organization of
gene expression with other facets of the intracellular network.
Furthermore, relative to protein interaction networks or metabolic
networks, coexpression covers a more inclusive array of func-
tional relations between gene products. As a threshold to establish
a link in the network between two genes, we chose a coexpression
correlation of 0.6 in a large-scale expression data set (Hughes et al,
2000), as higher thresholds do not give higher reliabilities of
functional interaction between the encoded proteins (van Noort
et al, 2003). The coexpression network has 4,077 nodes (genes)
that are linked by a total of 65,430 connections, the average
number of connections per node (k) thus being 32 (each
connection links two nodes). The distribution of number of links
per node is scale free with degree exponent gE1 (Fig 1). Note that
although the average number of connections is 32, most genes are
connected to only one other gene, as reflected by the scale-free
distribution (Fig 1). The clustering coefficient of the network (c, the
fraction of cases where if a node has a connection to two other

nodes, these two also have a direct connection to each other) is
0.6. Not all nodes are connected in one cluster; the largest cluster
contains 3,945 nodes, with an average shortest path length (L) of
4. In a random network with the same number of nodes (N) and
connections (k), c¼ 0.008 (k/N) (Barabasi & Albert, 1999) and
LE2.8 (from simulations; see Methods). Thus, the yeast coexpres-
sion network has all the properties of a small-world (LELrandom,
cb crandom), scale-free (N(k)Bk�g) network that is typical for
intracellular networks in which the nodes are connected when
they are involved in the same process. Using thresholds for
coexpression higher than a correlation coefficient of 0.6 gave
similar results, that is, a scale-free degree distribution and small-
world organization (Fig 1). Using lower thresholds leads to the
inclusion of ‘random’ connections (van Noort et al, 2003) and an
exponential degree distribution with a smaller c (Fig 1). At the
threshold of 0.6, the network statistics are similar to previously
studied biological networks (Fell & Wagner, 2000; Jeong et al,
2000, 2001; Wagner, 2001; Snel et al, 2002), and thus we use this
network for further study.

The coexpression data have another interesting property: a
correlation between the fraction of coexpressed paralogues and
their sequence similarity (Fig 2A). An independent data set that
also contains this pattern is the large-scale, experimental
determination of transcription factor binding sites (TFBSs) (Lee
et al, 2002), in which the number of shared regulatory elements
between paralogues increases with protein identity (Fig 2B). A
correlation between divergence in sequence and in coexpression
is expected if both diverge at constant, clock-like rates (Wagner,
2000), and indicates neutral evolution of these two traits. It
appears that in the case of gene duplication, the regulatory
elements tend to be coduplicated with the genes and mutated
afterwards.
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Fig 1 | Distribution of connections per node in the coexpression network.

Nodes are genes and connections are defined by coexpression of two genes,

resulting in a network. The number of nodes (N) with a certain number of

connections (k) in the coexpression network is shown, where coexpression

is defined by a correlation in expression pattern higher than 0.4 (right-

pointing arrows), 0.6 (circles) or 0.8 (left-pointing arrows). The

distributions at thresholds 0.6 and 0.8 are scale free with an exponent gE1.
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Existing network-evolution models cannot account for the
combination of the architecture of the coexpression network and

the correlation between coexpression and sequence similarity in
paralogues. The network model of Barabasi & Albert (1999), based
on the concept of preferential attachment (Simon & Bonini, 1958),
produces scale-free networks, but not small-world networks
(cEcrandom; in a small-world network cbcrandom), even when
introducing constraints to the number of connections per node
or to the ageing of nodes (Amaral et al, 2000). The algorithm of
Ravasz et al (2002) to realize a small-world, scale-free network
involves hierarchical duplication of complete modules and
attachment to the central node of the existing module. This model
does not lead to a high likelihood of attachment between
duplicated nodes, and is therefore not explanatory for the
evolution of our network. Moreover, in contrast to the predictions
of this model, the explicit testing of the age of genes (see Methods)
and the number of their connections did not reveal any positive
correlation (Pearson correlation¼�0.04, P-value that there is no
positive correlation¼ 0.98). The duplication model of Bhan et al
(2002) assumes duplication of genes with partial conservation of
connections. When seeding this model with a scale-free network,
most of the structure persists for a few iterations; however,
simulating this model for a higher number of iterations results in
an exponential degree distribution of N versus k (Pastor-Satorras
et al, 2003). In this model, there is no relation between the timing
of a duplication event and the likelihood of attachment of the
resulting paralogues. This is because the connections are fixed
once established, as in all previous models. This is not an
evolutionarily sound assumption, given the observation that
connectivity between paralogues is dependent on the timing of
the duplication event and that coexpression is only partly
conserved between species (Teichmann & Babu, 2002; van Noort
et al, 2003).
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Fig 2 | Coexpression between paralogues in experiments. (A) Fractions of

coexpressed paralogues calculated by correlation in coexpression in the

data set of Hughes et al (2000). (B) Average number of shared regulatory

elements between paralogues in the data set of Lee et al (2002).
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We introduce a new, simple model to explain the emergence
of scale-free networks with a high clustering coefficient that is
based on the observation of a positive correlation between the
probability of a connection between two paralogues and their
sequence similarity. In this model, the entities are genes that have
a number of TFBSs. Connections between genes are established
when they share a minimum number of TFBSs. At every time step,
each gene has a probability of being duplicated, resulting in a new
gene (step 1, Fig 3). In the case of duplication, the TFBSs are
passed on to the duplicate gene, corresponding to a high
likelihood of coexpression between recently duplicated paralo-
gues in the experimental data. A gene may be deleted (step 2,
Fig 3). A TFBS can be acquired from the pool of TFBSs of all genes,
where the probability of obtaining a specific TFBS is proportional
to its frequency in the genome (step 3, Fig 3), introducing
connections between nonparalogous genes. New TFBSs are
introduced at a low frequency. All TFBSs have a probability of
being deleted (step 4, Fig 3), giving rise to a decrease in
connectivity between duplicates over time and balancing the
number of TFBSs per gene. We simulated this model by seeding it
with 25 genes with randomly assigned TFBSs and evolving these
for 100 evolutionary steps, observing three parameter regimes. In
the first regime (left-pointing arrows, Fig 4), the TFBS duplication
and deletion rates are much higher than the gene rates. This
effectively decouples the TFBS from the genes and gives rise to
a very loosely connected network (a steep slope), albeit with a
power-law distribution of the number of connections per node
and a high c (c¼ 0.3 in this specific case). In the second regime
(circles, Fig 4), the TFBS duplication and deletion rates are in the
same order of magnitude as those for the genes. Here, we observe
a scale-free degree distribution with a slope similar to the one

observed in the experimental data and a high c. In the third regime
(right-pointing arrows, Fig 4), the rates for TFBS duplication and
deletion rates are much lower than those for genes. This couples
the TFBS to the genes such that almost every pair of paralogues is
connected, resulting in a very tightly connected network, with an
exponentially declining degree distribution and a very high c
(close to 1).

In a natural situation, we do not expect the evolutionary
parameters to be in the third regime, as pieces of DNA are
duplicated by the same mechanisms, be it coding or noncoding
DNA. Also, TFBSs are much smaller than genes and are thus
expected rather to have duplication and deletion rates that are at
least as high as those for individual genes. A simulated network in
the intermediary regime exists of, for example, 4,273 nodes
connected by 56,953 connections. The network displays small-
world behaviour, indicated by a high clustering coefficient
(c¼ 0.2) relative to random networks (crandom¼ 0.003) and in
the largest cluster of 4,070 nodes an average shortest path length
(LE3) that is similar to the shortest path length in a random
network (LrandomE3.5). The overall behaviour of this network is
very similar to the coexpression network. This indicates that a
scale-free, small-world organization as such can be the result of
neutral evolution. Still, the levels of cliquishness and the slope of
the scale-free distribution may be the result of natural selection.

DISCUSSION
The functional relevance of the typical scale-free, small-world
organization that we observe in intracellular networks is open
to debate. In the absence of an experimental system with which to
test the functional relevance of the network architecture, we have
to resort to theoretical experiments. These basically answer the
following question: what are the minimal conditions under which
a specific network architecture can evolve? To answer these
questions, we have studied the coexpression network in
S. cerevisiae that we show to have a small-world, scale-free
architecture. Furthermore, the network contains a positive
correlation between the probability of coexpression of two
paralogues and their sequence similarity. We introduce a network
model that reproduces the architecture as well as the homology
relations in the coexpression network. Its key components are that
genes are coduplicated with their TFBSs and that multiple shared
TFBSs are required for coexpression. Our observation of a positive
correlation between sequence similarity and the level of co-
expression contrasts with the results of Wagner (2000), who only
observed a very weak correlation. The difference is probably
explained by the much larger coexpression data (Hughes et al,
2000) and the additional data set of TFBSs (Lee et al, 2002)
combined with homology relations. This analysis of more data
thus offers support for a neutralist’s explanation of the gene
coexpression network architecture.

In contrast, not only the scale-free, small-world architecture of
intracellular networks but also one of the network statistics, the
diameter, have been argued to be the result of biological selection.
It should be noted that with respect to the diameter, the direction
of this argument has been rather arbitrary: both the relatively small
diameter of metabolic networks (Jeong et al, 2000) and the
relatively large diameter of protein interaction networks (Maslov &
Sneppen, 2002) have been argued to be the result of selection.
Subsequent analyses have however shown that in both cases the
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networks were more random than proposed, and that the observed
biases in the diameter size were either due to the choice of
the network nodes (Ma & Zeng, 2003) or experimental bias in
the underlying data set (Aloy & Russell, 2002). This leaves the
argument that the scale-free, small-world architecture itself is a
result of selection (Guelzim et al, 2002). As our model is purely
mechanistic and the mechanisms are sufficient to explain the
properties of the network, we do not need selection at the level
of the network or at the level of gene regulation. This does not
exclude the possibility of selection at that level or that the network
architecture is in some way or another exploited by the cell, but it
does call for a more sober view in interpreting network
architectures in terms of selection and the benefits for the cell.

METHODS
Random network. To evaluate the nontrivial properties of the
coexpression network, it is compared with a random network. The
random network is simulated by taking the same number of nodes
as the coexpression network and randomly placing the same
number of connections between these nodes.
Clustering coefficient and average shortest path length. The
clustering coefficient (c) or the degree of cliquishness is computed
by first counting all pairs of associations (cases where gene A is
linked to gene B and to gene C), subsequently counting how often
these pairs are closed (B is linked to C), and then dividing the
second count by the first count (Watts & Strogatz, 1998). L is the
average minimum number of nodes one needs to cross to get from
one node to another. To obtain L, we compute the shortest path
between all pairs of genes, and subsequently compute the average
(Watts & Strogatz, 1998).
Gene age. The age of genes was determined by the amino-acid
distance (100 – percentage protein identity) to the most distant
paralogue (homologue within the same genome; Fitch, 1970).
Duplications seem to be rampant in yeast; thus, when a gene was
present very early in the genome, it is likely to have distant
paralogues. This distance was then used to find out whether there
is a correlation between gene age and the number of connections
in the coexpression network.
Paralogues. To determine the correlation between protein identity
and probability of connections between paralogues, we first need
to determine paralogues. This is done by Smith–Waterman (Smith
& Waterman, 1981) searches of the amino-acid sequences of the
translated genes of S. cerevisiae (Goffeau et al, 1996) against each
other. Matches with an E-value below 0.01 are considered
paralogues.
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